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Respiratory tract infections (RTI) are the leading cause of death in low-income coun-
tries and the second leading cause of death in children less than 5 years old world-
wide, according to the World Health Organization. Most upper and lower RTI (URTI
and LRTI) are viral, although in many cases a pathogen is never identified.1,2 Advances
in viral diagnostics and molecular virology have allowed identification of previously
unknown pathogens. Human metapneumovirus (hMPV) was discovered in 2001 in
routine viral cultures of respiratory specimens from children with RTI. hMPV has
been implicated as a common cause of URTI and LRTI in children and adults and
a cause of severe disease in immunocompromised hosts.

MICROBIOLOGY

hMPV phylogenic classification is illustrated by the method of its discovery. Van den
Hoogen and colleagues3 identified 28 viral isolates from cultures of nasal secretions of
patients presenting with symptoms of RTI. All isolates caused cytopathic effects in
tertiary monkey kidney cells that were morphologically indistinguishable from, though
later than, those of respiratory syncytial virus (RSV). On electron microscopy, these
investigators observed pleomorphic particles measuring 150 to 600 nm with short
envelope projections and rare nucleocapsids, features that are characteristics of Par-
amyxoviridae. A representative electron micrograph of hMPV is shown in Fig. 1. Other
results that were also consistent with inclusion of the new virus in the Paramyxoviridae
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Fig. 1. Electron micrograph of hMPV grown in rhesus monkey kidney cells. The nucleocapsid
is ruptured and the virion is spilling out. Note the pleomorphic viral shape and the envelope
projections. (From Chan PKS, Tam JS, Lam C-W, Chan E, Wu A, Li C-K, et al. Human meta-
pneumovirus detection in patients with severe acute respiratory syndrome. Emerg Infect
Dis [serial online] 2003 Sept. Available from: URL: http://www.cdc.gov/ncidod/EID/vol9no9/
03-0304.htm.)
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included abrogation of infectivity by chloroform treatment, lack of hemagglutination of
turkey, chicken, or guinea pig erythrocytes, and dependence on trypsin for replication
in cell cultures.3

Members of the Paramyxoviridae family are enveloped viruses with single-stranded,
nonsegmented, negative sense RNA. Paramyxoviridae include the subfamilies Para-
myxovirinae and Pneumovirinae; the Pneumovirinae subfamily is further divided into
the genera Pneumovirus and Metapneumovirus. RSV is an important human pathogen
in the Pneumovirus genus. Metapneumoviruses differ from pneumoviruses by the
absence of 2 nonstructural proteins, NS1 and NS2, and a difference in gene order.3,4

Sequencing data from hMPV demonstrate an absence of NS1 and NS2 open reading
frames (ORFs) and positioning of the F gene adjacent to the M gene, confirming its
classification as a metapneumovirus.4 The genomic organization of hMPV is 3-N-
PM-F-M2-SH-G-L-5 with 2 ORFs of M2 coding for proteins M2-1 and M2-2. The other
known member of the Metapneumovirus genus is avian pneumovirus.3,5

The sequence of the hMPV RNA suggests that hMPV makes 9 proteins. Three viral
glycoproteins (attachment [G], fusion [F], and small hydrophobic [SH]) are believed to
be inserted into the lipid envelope. The F protein contains an F1/F2 cleavage site in the
hydrophobic region and has 2 heptad repeats in the extracellular domain, features
distinctive for a viral protein that fuses viral and host cell membranes.6,7 The G protein
is a heavily glycosylated type II mucinlike protein, and its O glycosylation pattern, efficient
export to the host cell surface, and type II membrane orientation suggest its role as an
attachment protein.8–11 The sequence of the G protein is highly variable between strains,
similar to the RSV G protein, which suggests that there is serotypic variation of this
protein (discussed later). A G-protein deficient mutant is able to replicate in vivo and in
vitro, albeit less efficiently than wild-type hMPV, suggesting that G-protein is not abso-
lutely required for viral replication.12,13 The function of the SH protein remains unknown.

The helical nucleocapsid is believed to be composed of viral RNA and the nucleo-
capsid protein (N), phosphoprotein protein (P), large polymerase protein (L), and tran-
scriptional enhancer protein (M2-1).14 The 3 nucleocapsid proteins N, P, and L are
likely involved with viral replication and transcription. M2-1 and M2-2 proteins of

http://www.cdc.gov/ncidod/EID/vol9no9/03-0304.htm
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Pneumovirinae are regulatory proteins, functioning as a transcriptional elongation
factor (M2-1) and a promoter of viral assembly (M2-2) in RSV.15 hMPV strains lacking
M2-2 have more frequent point mutations and display upregulated transcription, sup-
porting the role of M2-2 as a regulator of viral transcription.16 The matrix protein (M)
surrounds the nucleocapsid within the lipid envelope, and likely facilitates the connec-
tion of nucleocapsids with the viral lipid envelope.14,15

Van Den Hoogen separated hMPV into 2 lineages based on sequence homology. The
distinct lineages, now called hMPV type A and B, have been identified in multiple
phylogenic studies, and each type is further grouped into 2 subtypes, called A1, A2,
B1, and B2.9,17–20 Overall genetic identity between types is more than 80%, whereas
amino acid sequence identity is more than 90%.17,19,20 hMPV type A and B grouping
is concordant based on sequence diversity between genes encoding for N, M, F, G,
and L proteins, although the extent of sequence diversity varies.17,19,21 Subtypes A1,
A2, B1, and B2 are distinguished by diversity between gene sequences for the surface
glycoproteins G and F. Identity of the F genes between subtypes within groups A and B
is 94% to 96%, whereas identity between G gene sequences is 76% to 83%.17,19

EPIDEMIOLOGY

Humans are the only known natural host for hMPV. The virus is presumably spread
from person to person by respiratory droplets similar to other paramyxoviruses,
although this has not been definitively determined.22 hMPV infection has been de-
tected worldwide, with reports from North and South America, Europe, Asia, Africa,
and Australia.20,23–41 Serologic studies of stored specimens indicate that hMPV has
infected humans for at least 5 decades.3

hMPV infection is seasonal, with winter epidemics occurring from December to April
in the northern hemisphere, simultaneous with or slightly later than RSV epidemics
(Fig. 2).26,39,41–43 All 4 subtypes of hMPV usually circulate in the same season, and
the predominant serotype may alternate in consecutive years in the same loca-
tion.20,42,44,45 Whereas Agapov and colleagues21 found a shift in predominance
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Fig. 2. The seasonality of hMPV, influenza viruses, and RSV infections in Boston, MA, USA.
Each curve shows the percentage of patients with the indicated virus during the indicated
4-week period. (From McAdam AJ, Hasenbein ME, Feldman HA, et al. Human metapneumo-
virus in children tested at a tertiary-care hospital. J Infec Dis 2004;190(1):21–6; with
permission.)
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(>80% of isolates) from type B to type A in St Louis, Missouri, USA, Mackay and
colleagues46 detected a shift in predominant subtype (>50% of isolates) from A1 to
A2 in Queensland, Australia in sequential years.

hMPV is most commonly a disease of young children, causing approximately 5% to
10% of LRTI in infants, and in some studies it is the second leading cause of bronchio-
litis after RSV.35,41,47–49 Multiple methods of evaluating seroprevalence have shown
that more than 90% of children have evidence of prior hMPV infection by the age of
5 years.3,50–52 The peak age of hMPV infection ranges from 5 to 22 months, typically
older than that of RSV, younger than that of influenza, and with a more even distribu-
tion among age groups.41,42,45,47,53–55 In 1 study of potential risk factors for viral infec-
tion, hMPV and coronavirus showed a stronger association to childcare attendance
than RSV, picornaviruses, influenza viruses, adenovirus, and parainfluenza viruses.39

Young healthy adults have a higher yearly hMPV infection rate, ranging from 4% to
15%, than do elderly or high-risk adults, perhaps because of more frequent contact
with children.56 Yearly seroconversion rates in patients more than 65 years old living
in long-term care facilities (LTCFs) is up to 12%, and in 1 hMPV outbreak among
elderly patients in an LTCF the mortality in confirmed cases was 50%.57,58 hMPV se-
roprevalence was found to be 83% among adults with underlying chronic obstructive
pulmonary disease (COPD).59

CLINICAL PRESENTATION

hMPV is a respiratory pathogen known to cause LRTI and URTI. It is detected only rarely
from asymptomatic hosts.42,57 hMPV has been implicated in the cause of childhood
bronchiolitis, pneumonia, asthma exacerbation, and croup, and it also plays a role in
exacerbation of COPD in adults and severe disease in the immunocompromised host.

LRTI

hMPV has been isolated from respiratory specimens from children and adults with
pneumonia.33,42,60,61 Williams and colleagues42 retrospectively identified hMPV in
20% of frozen respiratory samples that were collected for 20 years from children with
LRTI. These samples had previously tested negative for other viruses. The hMPV rate
in samples previously found to be positive for another virus (coinfection rate) was
4%, demonstrating that hMPV is most often found as sole pathogen. Diagnoses in
this cohort included bronchiolitis in 59%, croup in 18%, pneumonia in 8%, and asthma
exacerbation in 14%. Children presenting with hMPV LRTI commonly have a preceding
URTI (83%), fever (52%–100%), dyspnea (80%–83%), cough (68%–90%), and coryza
(88%). Signs of hMPV infection include rhinitis (64%–77%), wheezing/stridor (50%–
56%), tachypnea (77%), abnormal tympanic membrane (51%), pharyngitis (39%),
rhonchi (20%), rales (8%), and hypoxia of less than 90% (31%–38%).26,29,42,45,53,60 In
an analysis of 132 patients presenting with acute wheeze, hMPV accounted for 10 of
116 cases (9%) in which a pathogen was detected.43

Chest radiographs (CXRs) of patients with hMPV LRTI are abnormal in about half of
patients, with findings that include diffuse perihilar infiltrates, peribronchial cuffing,
lobar infiltrates, or hyperaeration (Fig. 3).29,42,45,60 White blood cell counts and C-reac-
tive protein levels are typically normal during acute hMPV infection with a range of 6.3
to 16.4 � 109/L (mean of 9.5–10.5) and 9 mg/L, respectively.43,60

It is not clear whether the severity of hMPV LRTI differs from that of other respiratory
viruses. Williams and colleagues42 found no difference in rates of abnormal CXRs,
hospitalization, or emergency room visits when comparing the severity of disease
caused by hMPV and other respiratory viruses (influenza, RSV, parainfluenza, and



Fig. 3. CXR from a 6-month-old child with bronchiolitis caused by hMPV. Hyperinflation and
diffuse infiltrates are seen. (From Williams JV, Harris PA, Tollefson SJ, et al. Human meta-
pneumovirus and lower respiratory tract disease in children. N Engl J Med 2004;350:443;
with permission.)
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adenovirus). A smaller study from Thailand found longer mean hospitalizations (6.8 vs
3.5 days) for children with hMPV compared with RSV LRTI, although other studies
showed no difference in rates of outpatient treatment and inpatient or intensive care
unit (ICU) admissions between hMPV and RSV.55,60

Williams and colleagues42 reported no clinical differences between infections
caused by hMPV types A and B. However, Vicente and colleagues62 suggest that
infection with hMPV type A is more severe than infection with type B. They found
that children with type A were more likely to present with pneumonia and had a higher
mean severity score based on oxygen saturation of less than 90%, and admission to
hospital or to an ICU.

Early studies suggested that coinfection with hMPV frequently occurs with severe
RSV bronchiolitis in children. Greensill and colleagues63 studied a cohort of infants
with RSV-positive bronchiolitis admitted to the ICU and found that 70% overall and
90% of those without an underlying condition tested positive for hMPV. These investi-
gators followed this observation with a larger retrospective study of children less than
2 years old with bronchitis and found that infants coinfected with hMPV and RSV were
significantly more likely to be admitted to the ICU than infants infected with RSV only.64

Williams and colleagues42 later reported no epidemiologic or clinical differences
between children infected with hMPV and children with hMPV coinfection with another
respiratory virus. An additional study by van Woensel and colleagues 65 did not find
hMPV coninfection in any of 30 children who required mechanical ventilation for RSV
LRTI. Taken together, these studies suggest that hMPV coinfection is not required
for, and is not particularly common with, severe manifestations of RSV bronchiolitis in
young children.

URTI

Williams and colleagues42 described children with hMPV URTI in a 20-year period
during which 5% of specimens that were negative for other respiratory viruses tested
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positive for hMPV. Symptoms and signs most frequently included fever (54%), coryza
(82%), cough (66%), rhinitis (79%), pharyngitis (63%), otalgia (31%), and abnormal
tympanic membrane (63%). Other signs occurring in less than 10% of patients were
hoarseness and conjunctivitis. hMPV was the most common pathogen isolated
from another cohort of children tested for pertussis; 9.9% had hMPV versus 7.3%
who tested positive for Bordetella pertussis, suggesting an overlap with the signs
and symptoms of whooping cough.66 As in LRTIs, hMPV serotype does not seem to
affect URTI disease severity.42

The presence of otalgia and abnormal tympanic membranes suggests that hMPV is
associated with acute otitis media in children.42,67 In a prospective cohort of children
aged 1 to 10 years presenting with acute otitis media, 13% were infected with hMPV.68

hMPV is a significant contributor to URTI in adults, accounting for 2% to 4.5% of
URTIs in healthy adults and adults with cardiopulmonary diseases.31,56,69,70 hMPV
has also been implicated in COPD exacerbation and has been detected in up to
12% of patients with COPD exacerbations.57,71 Another study documented that
4.2% of patients with COPD exacerbation seroconvert to hMPV.59

Immunocompromised and Vulnerable Hosts

hMPV causes URTI and LRTI in individuals infected with the human immunodefi-
ciency virus (HIV). In South Africa, the hospitalization rates for hMPV pneumonia
were more than 5-fold greater in children infected with HIV than in children who
were HIV negative.72 In a separate study, however, these investigators found no
significant clinical differences between the HIV-negative and HIV-positive children
hospitalized with hMPV infection, though HIV-infected children had a trend toward
longer hospitalization (9 vs 2 days).35 Clinical features of hMPV infection in this
HIV-positive cohort include mean O2 saturations of 92% on room air with 47% of
children requiring supplemental oxygen. Half of these subjects had wheeze and
57% had rales; 50% received a diagnosis of bronchiolitis and 65% a diagnosis of
pneumonia.35

hMPV can cause severe respiratory disease in immunocompromised hosts, as
demonstrated by numerous case reports. Severe hMPV infections have been reported
in patients with acute lymphoblastic leukemia (ALL), lymphoma, and lung cancer and
patients following lung transplants and hematopoetic stem cell transplants (HSCT)
(with and without concurrent neutropenia). In 2002, hMPV was identified at autopsy
as the cause of a pneumonia-related death of a child being treated for ALL.73 Of 2
hMPV-infected children younger than 5 years old with ALL on chemotherapy, 1 died
of acquired respiratory distress syndrome; of 2 adults older than 65 years old with
leukemia, neutropenia and hMPV, 1 died of pneumonitis.53 In a prospective study of
adult HSCT recipients with LRTI or URTI, 16 of 83 samples in which a pathogen
was isolated tested positive for hMPV.74 The yearly infection rate in these patients
was 3% to 5%. Five patients had LRTI; significantly more patients with LRTI had
had allogeneic transplants, and 2 patients died. In a separate series, 5 HSCT trans-
plant patients who tested positive for hMPV progressed to hemorrhagic pneumonia,
respiratory failure, and septic shock, and 4 of 5 patients died. In symptomatic patients
who had had a lung transplant 4% to 14% of bronchoalveolar lavage (BAL) samples
tested positive for hMPV; all patients clinically recovered, although in 1 series 60%
of lung transplant patients infected with hMPV developed graft dysfunction.44,66,75

Similar to RSV, other high-risk conditions such as premature birth, congenital heart
disease, and chronic lung disease increase the severity of disease and likelihood of
hospitalization during hMPV infection.26,35,62 Several cohorts of hMPV-infected chil-
dren included more than 30% with an underlying condition such as prematurity,
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chronic lung disease, or congenital heart disease.29,45,55,60 A 2-year prospective study
followed 194 infants with prematurity or congenital heart disease and found that
although just 2% of 567 RTI were caused by hMPV, 30% of those infections led to
moderate or severe disease (only 15% of illnesses resulted in any positive viral diag-
nosis, suggesting an underdiagnosis of all pathogens in this study).76
PATHOGENESIS

Animal models used to study pathophysiology and immunogenicity of hMPV infection
include the cotton rat, the BALB/c mouse, and cynomolgus macaques. Intranasal
challenge of BALB/c mice and cotton rats with hMPV results in peak viral titer in nasal
turbinates on day 2 and in lung homogenates on day 4 to 5 post infection.77–79 Most
small animal models show viral clearance from the respiratory tract by day 21,
although BALB/c mice have prolonged infection with biphasic viral replication with
hMPV serotype B.80 Although mice show weight loss and breathing problems on
days 5 to 7 post infection, rats seem to be asymptomatic.78,81 In macaques, viral
load in respiratory secretions peaks on day 4 then decreases to zero by day 10
post infection, and some macaques display rhinorrhea after nasal inoculation with
hMPV.82 In rodents and nonhuman primates, hMPV is detectable throughout the
respiratory tract, but does not spread to any other internal organ.79,82

Histopathologic changes of the lung during hMPV infection have been studied in
rodents, nonhuman primates, and humans. At the peak of infection with hMPV, the
rat lungs show peribronchial lymphoplasmocytic infiltrates and edema of the bronchial
submucosa.79 Small and medium bronchi show hypersecretory epithelium. Mononu-
clear infiltrates cause alveolar interstitial expansion. Bronchial lumens contain
sloughed epithelium, neutrophils, macrophages, and other debris. BALB/c mice
develop parenchymal pneumonia and neutrophilic infiltrates during hMPV infection;
they seem to have less severe peribronchiolitis than cotton rats, although increased
histopathologic scores persist for 21 days compared with just 1 week in rats.77,78 In
macaques, histopathologic studies show a similar loss of ciliated epithelium, neutro-
phil transmigration, interstitial edema, and intraluminal sloughed epithelial cells and
debris.82 Six BAL samples and 3 lung biopsies from children with hMPV infection,
obtained between 2 months before and 2 months after the positive hMPV specimen,
were reported. BAL samples show epithelial cell degeneration or necrosis with ciliocy-
tophthoria and round red cytoplasmic inclusions, hemosiderin-laden macrophages,
frequent neutrophils and mucus (Fig. 4).83 In acute disease, lung biopsies can show
eosinophilic nuclear and cytoplasmic inclusions (Fig. 5). In more longstanding
disease, chronic airway inflammation and intra-alveolar foamy and hemosiderin-laden
macrophages have been observed.

Immunohistochemistry provides insight into the location and extent of viral replica-
tion in the respiratory tract. In cotton rats and macaques, hMPV antigen is detected
at the luminal surfaces of epithelial cells from nasal tissue to bronchioles.79 In
macaques, individual or groups of ciliated cells are affected, often in morphologically
normal tissue.82 Goblet and basal cells are spared. Occasional positive hMPV staining
is identified in alveoli, including type 1 pneumocytes, adjacent alveolar macrophages,
and intraluminal debris, although giant cells are spared. It was unclear whether hMPV
in intraluminal macrophages is from infection of macrophages or from phagocytosis
of infected material.

hMPV infection of the respiratory tract leads to increased levels of chemokines and
cytokines in respiratory secretions of animals and humans. Levels of macrophage
inflammatory protein 1a (MIP-1a), regulation on activation of normal T cells expressed



Fig. 4. Hematoxylin and eosin-stained BAL specimen from a 14-year-old girl who underwent
lung transplantation, showing (A) a glassy red cytoplasmic inclusion within a ciliated respi-
ratory epithelial cell with a degenerating (pyknotic) nucleus (arrowhead) and (B) a glassy
pink inclusion within a ciliated respiratory epithelial cell without a visible nucleus. Original
magnification, �1000. (From Vargas SO, Kozakewich HPW, Perez-Atayde AP, et al. Pathology
of human metapneumovirus infection: insights into the pathogenesis of a newly identified
respiratory virus. Pediatr Dev Pathol 2004;7(5):478–86; with permission.)
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and secreted (RANTES), interferon g (IFN-g), interleukin 4 (IL-4) and monocyte chemo-
tactic protein 1 (MCP-1) all increase in the lungs of hMPV-infected mice.78 Levels of
mRNA for these cytokines in the lung (except IL-4, which was not measured) and
IL-2 are also increased by hMPV infection in the cotton rat.78 The kinetics with which
the levels of these proteins increase and decrease parallel the kinetics of the inflam-
matory response within the rodent lung, and all decrease to baseline levels by 12 to
21 days after infection. In an analysis of respiratory specimens from infants with
hMPV and RSV infection of similar clinical severity, hMPV elicited 2- to 6-fold lower
production of IL-12, TNF-a, IL-6, IL-1b, IL-8, and IL-10.84 These investigators suggest
that mechanisms other than innate immunity must be elicited in human hMPV infection
Fig. 5. Histologic section of lung tissue from a congenitally immunodeficient 15-month-old
infant dying with culture-positive hMPV pneumonia. A giant cell (center) shows round
smudgy pale pink intranuclear inclusions with a surrounding halo and globular dark pink
intracytoplasmic inclusions (hemotoxylin and eosin; original magnification, �400). (Courtesy
of Milton J. Finegold, MD, Houston, TX, USA.)
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to account for its clinical severity. These mechanisms might include direct epithelial
damage, Th2 polarization leading to pulmonary airway hyperreactivity or chemo-
kine-mediated inflammation.84 Evidence for Th2 polarization in hMPV infection
includes significantly lower IFN-g/IL-4 ratios in secretions from infants infected with
hMPV compared with influenza and RSV, suggesting a Th2 bias in the T-helper cell
response to this pathogen.85 These investigators also report that compared with influ-
enza, hMPV and RSV infection result in lower levels of IFN-g, IL-4, and IL-2 and that
levels of cytokine production are not related to severity of illness for any of these
viruses. These studies suggest that despite structures and clinical sequelae that are
similar to other pathogens, innate immunity and inflammatory responses to hMPV
are unique and not fully understood.
DIAGNOSIS
Culture

As discussed earlier, hMPV was discovered by culture of respiratory samples with
tertiary monkey kidney cells. Cytopathic effects appear after 14 days (later than those
typically caused by RSV), and they include cellular rounding without syncytia forma-
tion (Fig. 6).3,86 The virus grows most efficiently in rhesus monkey kidney cell lines
(LLC-MK2) with exogenous trypsin.18,53,87 hMPV grows poorly in Vero and A-549
(human lung adenocarcinoma) cell lines and slowly in MDCK and MCR-5 cell
lines.3,18,53,67 More recently, it has been shown that hMPV replicates well without
trypsin in a human bronchiolar cell line 16HBE140.88 Despite improvements, culture
Fig. 6. Cytopathic effect of hMPV in rhesus monkey kidney (LLC-MK2) cells. Early cytopathic
effect (I) shows a single focus of infected cells with refractile rounding is indicated by an
arrow whereas late cytopathic effect (B) shows a larger focus and also shows detachment
of cells from the monolayer. Original magnification �100. (From Chan PKS, Tam JS, Lam
C-W, Chan E, Wu A, Li C-K, et al. Human metapneumovirus detection in patients with severe
acute respiratory syndrome. Emerg Infect Dis [serial online] 2003 Sept. Available from: URL:
http://www.cdc.gov/ncidod/EID/vol9no9/03-0304.htm.)

http://www.cdc.gov/ncidod/EID/vol9no9/03-0304.htm
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is generally insensitive for detection of hMPV and this, along with the slow replication
of the virus in culture, makes this an uncommon method for diagnosis of hMPV.

Immunofluorescent staining of shell vial centrifugation culture (SVCC) has been
used successfully for a more rapid detection of respiratory viruses.89 SVCC allows
detection of viral antigen after a culture time of just 2 days. A monoclonal antibody
(MAb-8) specific to hMPV is not useful for immunofluorescence assay (IFA) directly
on patient specimens, but it can be used to detect hMPV when used with SVCC
with several cell lines.89 Subsequent studies have found the LLC-MK2 cell line is the
most sensitive for SVCC of hMPV and that an incubation time of 3 to 5 days increases
culture sensitivity.90

Immunoassays

Immunofluorescent staining for hMPV in respiratory secretions has moderate sensitivity
and high specificity. Using an anti-hMPV mouse monoclonal IgG antibody, which recog-
nizes both subgroups of hMPV A and B, Ebihara and colleagues27 compared IFA to
reverse transcriptase-polymerase chain reaction (RT-PCR) of posterior nasal samples.
IFA was positive in 11 of 15 symptomatic patients who tested positive for hMPV by
RT-PCR. In addition, 1 of 33 RT-PCR negative patients tested positive by IFA. The sensi-
tivity and specificity of IFA compared with RT-PCR was found to be 73% and 97%,
respectively. Similar results were obtained for direct fluorescent antibody staining of
respiratory specimens with a pool of MAbs (sensitivity 72.7%, specificity 94.4%).91

Given its ease and objectivity, there is likely a clinical role for enzyme immunoassay
(EIA) to detect antigen rapidly from nasopharyngeal aspirates. A commercial immuno-
assay for hMPV has been produced by Biotrin Ltd (Mount Merrion, Co. Dublin, Ireland),
but it does not have approval by the US Food and Drug Administration (FDA) for clin-
ical use. A combination of MAbs and matrix and fusion proteins is used as capture
antibodies. Using culture and RT-PCR as gold standard, EIA was found to have
a sensitivity and specificity of 81% and 100%, respectively.92 A high proportion of
samples gave equivocal results in this assay (8.3%) and, after performing discrepant
analysis, the investigators counted these results as positive results, so more careful
statistical evaluation of this test is needed. Despite their lower sensitivity than PCR,
the ease, rapidity, and lower cost of IFA and EIA make them clinical diagnostics
that could be feasibly offered by most microbiology laboratories.

PCR

PCR has been found to have higher sensitivity than culture and IFA.27,93 Sensitive and
specific RT-PCR techniques have been developed for the detection of hMPV from
nasopharyngeal aspirates and bronchoalveolar lavage specimens. Primers chosen
to amplify a segment of the N gene sequence have been shown to be the most sensi-
tive when compared with primers directed at L, M, P, and F genes with sensitivities of
100%, 90%, 75%, 60%, and 55%, respectively.94 When PCR amplification product is
subjected to an enzyme-linked amplicon hybridization assay (ELAHA) the technique
yields a 512-fold increased sensitivity compared with routine electrophoresis.93

Real-time RT-PCR using the same primers as those used for PCR-ELAHA increases
sensitivity, and reduces turn-around time and the risk for contamination to the assay.
A nucleic acid sequence-based amplification (NASBA) assay targeting the M gene
was found to be slightly less sensitive in pediatric patients compared with RT-PCR
of the N gene.66 These investigators also found RT-PCR and NASBA to be slightly
less sensitive for the detection of hMPV serotype B than A. Real time RT-PCR for
hMPV is available in 2 assays that have been approved by the FDA. The xTAG Respi-
ratory Viral Panel (Luminex, Austin, TX, USA) is a multiplex PCR assay for several
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respiratory viruses in which PCR products are detected by hybridization to oligonucle-
otides on fluorescent beads, which are then analyzed by flow cytometry. It is reported
to have a sensitivity and specificity of 96% and 98.6%, respectively, for hMPV.95 The
second real time RT-PCR approved by the FDA for hMPV is the pro hMVP1 assay
(Gen-Probe Prodesse, Waukesha, WI, USA). The package insert for this assay claims
a sensitivity of 95.5% and a specificity of 99.3%.

Serology

Enzyme-linked immunosorbent assays (ELISAs) were first developed using hMPV-in-
fected cells as antigen to detect hMPV antibody in sera.3,28,50,52,53,56 To increase
sensitivity and specificity, a recombinant N protein was developed as capture
antigen.96 The N protein was selected as antigen because it is highly conserved
between hMPV types A and B.19 An ELISA using recombinant N-A or N-B protein
can reliably detect seroconversion in recently infected individuals, although there is
significant cross-reactivity between the 2 types caused by antibody recognition of
conserved epitopes.96 An ELISA has also been developed using a recombinant F
protein as antigen, also showing 100% cross-reactivity between hMPV serotypes A
and B.51 By developing recombinant G-proteins from each of the 4 hMPV subgroups,
Endo and colleagues97 were able to detect subtype specific antibody in all convales-
cent samples from hMPV-infected children.

DIFFERENTIAL DIAGNOSIS

The clinical presentation for hMPV, including URTI and LRTI, is most similar to that of
RSV. The differential diagnosis for hMPV includes other respiratory viruses such as
influenza A and B, RSV, parainfluenza viruses, rhinoviruses, coronaviruses, and para-
influenza viruses. In addition, bacterial causes of community-acquired pneumonia
must also be considered. In patients with underlying asthma and COPD, acute
hMPV infection may mimic exacerbations of these conditions. The differential diag-
nosis for hMPV is summarized in Table 1.

TREATMENT, PROGNOSIS, AND LONG-TERM OUTCOME

There is currently no approved, specific therapy for hMPV infection, and treatment
is supportive. Several agents have been evaluated for their effect on hMPV repli-
cation in vitro or in animal models. Ribavirin and pooled human immunoglobulin
inhibit hMPV and RSV replication equally in cell culture.98 Ribavarin also reduces
Table 1
Differential diagnosis for syndromes resembling hMPV infection

Viruses RSV
Influenza A and B viruses
Parainfluenza viruses
Coronaviruses
Picornaviruses (eg, rhinovirus)
Adenovirus

Bacterial infections Mycoplasma pneumoniae
Chlamydia pneumoniae
Bordatella pertussis

Noninfectious causes Asthma
COPD
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the level of hMPV and inflammation in infected BALB/c mice.99 Palivizumab and
other chemotherapeutics directed at the F protein of RSV are not active against
hMPV.98 NMSO3, a sulfated sialyl lipid known to inhibit RSV replication in cell
culture and in the cotton rat model, has also been shown to inhibit hMPV replica-
tion, syncytia formation, and cell-to-cell virus spread in culture.100 None of these
compounds have been systematically tested in humans for the treatment of
hMPV infection, although a case report describes apparently successful treatment
with ribavirin of a patient who had undergone lung transplant and had severe
hMPV infection.101

Novel experimental therapeutics for hMPV have been evaluated in model systems,
but not in humans. Two potent small interfering RNAs targeting the nucleoprotein and
phosphoprotein mRNA inhibit 50% of hMPV replication in vitro at subnanomolar
concentrations.102 Another strategy for therapy targets a coiled-coil structure formed
by multimers of the F-protein during fusion of the viral and host-cell membranes.103

Treatment of hMPV-infected mice with a peptide (HRA2) that mimics the hydrophobic
F-protein heptad repeats, protects mice from lethal hMPV infection if the peptide is
given at the time of initial infection, but not if it is given a day later.103 Administration
of HRA2 at the time of hMPV infection also prevented infection associated airway
obstruction and reduced production of inflammatory markers (RANTES, MCP-1 and
IFN-g) in the mouse lung.103

IMMUNITY AND REINFECTION

It is controversial whether the 2 hMPV genetic lineages, A and B, are different sero-
types. Van den Hoogen and colleagues17 studied in vitro neutralization of hMPV infec-
tivity with antisera raised in ferrets infected with type A or B hMPV. They found
reduced neutralization capacity by antisera raised to the heterologous hMPV lineage
and preserved neutralization of hMPV strains within the same lineage, suggesting that
lineages A and B represent distinct serotypes. However, Skiadopoulos and
colleagues81 measured the cross-protective efficacy between types A and B hMPV
in the hamster and nonhuman primate models and found that the hMPV types A
and B are highly antigenically related and conferred significant cross-protection
measured by viral replication in the respiratory tract, indicating that they do not repre-
sent distinct serotypes. Whether there is cross-protection in humans between the
hMPV types remains to be fully explored.

Human adult populations typically show 100% seroprevalence of stable neutralizing
antibodies against hMPV. Reinfection rates in adults are between 1% and 9% yearly. It
is thought that such frequent reinfection throughout life explains the ubiquitous pres-
ence of anti-hMPV antibody in the adult population.53,56,104 The high frequency of
seropositivity in children, and frequent infection and seroconversion in adults,
suggests that immunity to hMPV is short lived and probably provides only incomplete
protection.

Reinfection with hMPV has also been well documented in children. Williams and
colleagues42 describe several patients who presented with distinct hMPV clinical
episodes from homologous and heterologous hMPV lineages. Recurrent infection in
HIV-1-infected children caused by homologous and heterologous strains has also
been reported.72 Consistent with reports of recurrent infections in humans in subse-
quent seasons, cynomolgus macaques infected with 3 consecutive doses of wild-
type hMPV were not protected against challenge infection after 8 months. Such
a finding suggests that vaccine candidates would require enhanced immunogenicity
to confer long-term protection.105
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